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The compression of a capsule between two plates is considered. The problem is solved numerically for a
capsule made of an incompressible liquid drop surrounded by a thin elastic membrane which has a negligible
bending stiffness. Numerical results are provided for three different mechanical laws of the membrane. By
considering elastic moduli independent of the deformation, we show that the isotropic dilation plays the major
role. In particular, an asymptotic behavior independent of the shear modulus is found for large deformations.
For more complex models, the deformation limits beyond which the variation of elastic moduli starts to play
a role are examined. The results indicate that the distinction between the different models requires a careful
inspection of both small and large deformations. The theoretical predictions are compared with experimental
results. For millimetric capsules with membranes made of covalently linked human serum albumin and algi-
nate, the best agreement is obtained by considering that the elastic moduli are independent of the deformation
and range from 0.1 to 4 N/m.
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I. INTRODUCTION

Capsules consist of a liquid internal medium surrounded
by a deformable membrane. This general definition applies
to both living cells and synthetic capsules that are used in
many industrial applications including pharmacology and
cosmetics. The role of the capsules is to transport, protect
and control the release of the encapsulated substance. The
membrane properties are thus of major practical interest: os-
motic properties govern the mass transfer through the mem-
brane[1] and mechanical properties control the capacity of
capsule deformation[2]. However, their determination is a
challenging problem, since the membrane is available only in
the form of capsules and not as large sheets of material suit-
able for classical experimental tests.

Several experimental techniques were introduced for the
determination of the mechanical properties of the membrane:
the compression between two plates was first applied to ur-
chin eggs[3]; the sucking into micropipette[4] and the in-
flation by osmotic pressure[5] were first used for the char-
acterization of red blood cells. They are now commonly
used. Whatever the experimental techniques considered, the
determination of the mechanical properties involves three
steps:(i) Measurement of the relationship between the cap-
sule shape and the force responsible for the deformation;(ii )
evaluation of the same relationship by postulation of a me-
chanical model for the membrane;(iii ) determination of the
model parameters by comparison between theoretical predic-
tions and experiments.

The present study focuses on the compression technique
which is now used for the characterization of many kinds of

capsules from micrometric living cells to millimetric artifi-
cial capsules:[6–11]. We will only consider membranes
made of a sheet of a three-dimensional material which is thin
enough to neglect the bending. Note that membranes which
are made of a few layers of molecules, as those of living
cells, generally have a non-negligible bending stiffness due
to their complex molecular network. For example, the model
due to Helfrich[12] for phospholipidic vesicles is based on
curvature energy(for recent developments see[13,14] and
references therein). Here, our objective is to investigate the
capability of the compression experiment to distinguish be-
tween different mechanical constitutive laws for a membrane
with negligible bending stiffness. Section II is devoted to a
brief presentation of the different available models. In Sec.
III, we solve numerically the compression problem for three
classic models and a wide range of parameters and we also
derive asymptotic laws for small and large deformations. In
Sec. IV, the theoretical predictions are compared with experi-
ments for millimetric capsules with membranes made of co-
valently linked human serum albumin and alginate.

II. MEMBRANE MECHANICAL LAWS

The thin membrane of the capsule can be considered ei-
ther as a two-dimensional or a three-dimensional continuous
material. When the membrane thickness is small compared
to the capsule radius but large compared to the size of the
molecules, it is possible to describe the membrane as a sheet
of a three-dimensional continuous material. This allows the
use of classical mechanical laws and to directly address the
role of the membrane thickness[9]. On the other hand, con-
sidering the structure and the forming process of most of the
membranes, it is unlikely that the properties of the material
in the plane of the membrane are the same as those in the
normal direction. For this reason, the two-dimensional de-
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scription is preferred here. Mechanical behaviour of the ma-
terial is then characterized by the constitutive law that relates
the tensions inside the membrane to the deformations it ex-
periences. It is necessary to distinguish the deformations in
the plane of the membrane which cause tangential tensions
from membrane curvatures that generate tangential bending
moments. By assuming that the two-dimensional description
is obtained by integration of the three-dimensional stresses
over the membrane cross section, the magnitude,h, of the
ratio between bending and membrane-expansion effects is
given by

h =
e2C2

a
, s1d

wheree, C and a are respectively the membrane thickness,
curvature and relative expansion. Several authors have con-
sidered the effect of membrane bending stiffness(see[15,16]
and references therein). Here we will focus on situations
where the membrane thickness is small enough so thath is
negligible.

Evans and Skalak[17] established the general expression
for an isotropic homogeneous purely-elastic two-dimensional
material with negligible bending stiffness. Notingl1 andl2
as the principal extension ratios, the deformation is fully
characterised by the two independent invariantsa=l1l2−1
and b= 1

2sl1/l2+l2/l1d−1. In the principal axes, the first
component of the tension is

s2d

the second component is obtained by exchanging subscripts
1 and 2. The area dilation modulusK and the area shear
modulus m are functions of the two invariantsa and b.
These two functions,Ksa ,bd and msa ,bd, define the me-
chanical constitutive law of the material. In the limit of small
deformations,e1=1/2sl1

2−1d!1ande2=1/2sl2
2−1d!1, Eq.

(2) becomes

T1 = K0se1 + e2d + m0se1 − e2d, s3d

where K0 and m0 are the limits of the functionsK and m
when a and b tend towards zero. Equation(3) is the two-
dimensional Hooke law, in which the Young modulus isE
=4K0m0/ sK0+m0d and the Poisson ratiov=sK0−m0d / sK0

+m0d.
The simplest constitutive law is obtained by considering

that the two elastic moduli are independent of the deforma-
tion, K=K0 andm=m0. For historical reasons, this law(here-
inafter noted ES), is not often used. On the other hand, the
two-dimensional Mooney-Rivlin law(MR), which has been
derived by considering an infinite thin sheet of incompress-
ible elastomer, is commonly used,

T1 =
GMR

l1l2
Sl1

2 −
1

l1
2l2

2Ds1 + C8 + l2
2C8d. s4d

GMR is a surface elastic modulus andC8 a non-dimensional
parameter ranging from 0 to 1. The corresponding expres-
sions ofK andm are complex and their limit in small defor-
mations areK0=3GMR and m0=GMR. Another usual law is
that proposed by Skalak, Tözeren, Zarda, and Chien[18] for
the description of the red blood cell(STZC):

T1 = GSTZCSl1

l2
sl1

2 − 1d + CSTZCl1l2sl1
2l2

2 − 1dD . s5d

The expressions ofK and m are again very complex, their
limits in small deformations areK0=GSTZCs1+2CSTZCd and
m0=GSTZC.

III. THEORETICAL AND NUMERICAL RESULTS

We consider the mechanical equilibrium of a capsule
compressed between two rigid plates separated by a distance
2h and subjected to a force F(Fig. 1). The capsule is made of
a thin impermeable elastic membrane that separates two in-
compressible Newtonian liquids. Initially, the capsule is a
sphere of radiusa. During compression, the membrane can
be decomposed in two parts. The first is in contact with the
plates and constituted of two disks of radiusrc. The other
part is curved and balances the pressure difference,DP
=F /prc

2, that exists between the inner and outer fluids. Since
the mechanical constitutive law of the membrane is given by
Eq. (2), the problem depends on two nondimensional param-
eters,j=s1−h/ad and z=m0/K0, and two nondimensional

functions, K̃=K /K0 and m̃=m /m0. For a given membrane

rheology, i.e., for given functionsK̃ and m̃, the nondimen-
sional force exerted on the two plates can be written as

F* =
F

aK0
= fsj,zd. s6d

In the limit of small deformations, the mechanical equilib-
rium can be written on the initial spherical shape,T1=T2
=aDP/2. The noncontact region is thus a truncated sphere of
radiusR terminated by the two disks of radiusrc. The vol-
ume conservation law then imposes thatR

FIG. 1. Schematic of the compression experiment.(a) Initial
shape;(b) during compression.
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=aÎ1+a2F* / s2prc
2d and we finally obtain at the first nonva-

nishing order inj:

F* = 2pj3. s7d

For finite deformations, we solved the problem numericaly
by using the method described in[6] and [7]. Here, 40 grid
points were used to describe the contact region, 300 for the
noncontact region, and the error on the capsule volume was
always less than 10−3. The results for the three models, ES,
MR and STZC, are shown in Fig. 2.

Figure 2(a) shows the results obtained with the ES model
for values of the modulus ratioz ranging from 0 to 10. First
of all, one notes that the asymptotic behavior for large defor-
mations is independent ofz. The meridian section of the
noncontact region tends to become a semicircle of radiush.
Assuming this shape, the capsule volume and area are

V = 2phrc
2 + p2h2rc +

4

3
ph3, s8d

A = 4ph2 + 2prc
2 + 2p2rch. s9d

For the volume to be conservedrc is given by

rc =
1

12
„f96a3/h + s9p2 − 96dh2g1/2 − 3ph…. s10d

By assuming uniform area variation and negligible shear, we
finally obtain

F* = pS A

4pa2 − 1D rc
2

ah
. s11d

Figure 2(a) confirms that Eq.(11) provides the correct
asymptotic behavior for large deformations. Smaller the
shear modulus, sooner the asymptotic behavior is reached. In
addition, for z between 1/10 and 1, the numerical results
tend towards Eq.(7) for small deformations. The effect of
the shear modulus is then restricted to the intermediate range
which connects the two asymptotic behaviors. Forz=1/3
this intermediate range even disappears. Forz smaller than
1/10 or larger than 1, the range of deformations investigated
did not allow to confirm the small deformations relationship
(7).

Let us go back to the assumption of negligible bending
stiffness. The membrane curvature, which is of order 1/h, is
not bounded whenh becomes small. It is therefore necessary
to check whether the relative magnitude of bending effects,
h, can remain small when the deformations become very
large. Assumingh!a, one obtains from Eqs.(9) and (10)
that a,a/h. Injecting this result in Eq.(1) yields

h ,
e

a

e

h
. s12d

Since e /hø1, the conditione /a!1 is sufficient to ensure
that bending effects are negligible over the whole range of
deformations.

Figure 2(b) shows the results obtained with MR and
STZC models. For small to moderate deformationssj
ø0.4d, the results are similar to those of the ES model. But
at large deformations, MR and STZC do not tend towards a
unique asymptotical behavior. Forz=1, the behavior of the
STZC model is close to Eq.(11) and the resistance it opposes
to the deformation increases whenz decreases. Contrarily,
the resistance of the MR model is always less than that of the
ES model and increases asC8 increases.

The present work deals with a capsule which is initially at
rest: there is no pressure difference between the inner and the
outer fluids prior to the compression. Let us consider for an
instant the case of capsule which is initially inflated. Its ini-
tial radius is thenls times larger than its radius at rest. As-
suming thatsls−1d is small, the small-deformation relation-
ship (7) becomes

F* = 2pS4

3
sls − 1dj + j3D . s13d

Figure 3 compares this analytical expression with numerical
results obtained forz=1/3 by using the MR model.(Note
that the choice of the mechanical model has no importance
since we only consider small deformations.) Equation(13) is
a good approximation up toj=0.3 for lsø1.02. The pres-
ence of the linear term,sls−1dj, suggests that a possible
initial inflation can be detected from the initial slope of rela-
tionship(6). Note that the present analysis is not valid for an
intially underinflated capsulesls,1d. In this case, the initial
shape would be nonspherical and show concave parts.

FIG. 2. Numerical results.(a) ES model;(b) STZC and MR
models.
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The present results show that the determination of the
membrane mechanical properties requires observation of a
wide range of deformations. Weak deformations are indepen-
dent of the mechanical model considered and should hence
permit determination ofK0 and m0. Concerning the MR
model, the present calculations showed that, forjø0.55, the
results are independent ofC8, similar to those of the ES
model with z=1/3, andwell predicted by Eq.(7). For the
STZC model, the discrepancies with the ES model start to be
significant fromj=0.4. On the other hand, large deforma-
tions are sensitive to the mechanical model considered. In
case the parameters of the model were previously determined
from weak deformations, large deformations should there-
fore permit to discriminate between the different possible
constitutive laws. However, we may anticipate from Fig. 2
that if one tried to adjust the model parameters by consider-
ing only large deformations, many constitutive laws could
seem to agree with the experimental results. Consequently,
the discrimination between the different mechanical models
requires to focus on both the weak and large deformation

regimes. Owing to the very rapid increase of the force with
the deformation(starting with j3 and getting higher and
higher as the deformation increases), the use of the logarith-
mic representation is strongly recommended.

IV. EXPERIMENTS

Our purpose is now to apply the previous theoretical
analysis to the determination of the mechanical properties of
real capsules. The present capsules were kindly provided to
us by F. Edwards-Lévy of the Faculté de Pharmacie de Re-
ims. Their membrane is made of covalently linked human
serum albumin(HSA) and alginate(Lévy and Edwards-Lévy
[19] and Edwards-Lévy and Lévy[8]). Calcium-alginate gel
beads coated with a HSA-alginate membrane were originally
designed for medical applications such as hepatocyte encap-
sulation for bioartificial liver[20] or encapsulation of geneti-
cally modified cells for AIDS treatment[21]. In this study,
HSA-alginate capsules were prepared according to the pro-
cedure described in[8]. Then, the gel core of the coated
beads was reliquified by Na citrate in order to obtain cap-
sules with a liquid core surrounded by a membrane made of
cross-linked HSA and alginate.

Ten capsules with radii ranging from 1.50 to 1.95 mm
have been tested(Table I). Capsules of set 1 belong to a first
batch and have a membrane thickness of approximately
20 mm. Capsules of sets 2a and 2b belong to second batch
and have a membrane thickness of approximately 30mm.
Before being used, all capsules were conserved in their origi-
nal 9 g/1 NaCl aqueous solution at a temperature of 5°C.
Capsules of sets 1 and 2a were directly tested in the com-
pression apparatus whereas capsules of set 2b had a more
complex history: after 12 months, they were immersed in
silicon oil (Rhodorsil 47V1000) and used for tests in Poi-
seuille flow inside a tube of 4 mm diameter; they were fi-
nally put back into the original solution before the compres-
sion test. During the compression tests all the capsules were
immersed in a 9 g/1 NaCl aqueous solution. The experimen-
tal setup used for capsule compression has been described in
[11] where capsules of the same nature were studied. These
capsules nevertheless differ from the present by their thick-
ness, age and history. It is therefore not possible to make
direct quantitative comparisons with the result of this previ-
ous study. In applications, capsules can be used during a long
time and immersed in various solutions. For that reason, we
decided to test capsules which differ by their age and history.

FIG. 3. Numerical results: effect of initial inflation.

TABLE I. Area dilation modulus measured for the ten capsules.(The accuracy in the determination ofK0

is of ±5 %.)

Capsule 1 2 3 4 5 6 7 8 9 10

Set 1 1 1 2a 2a 2a 2a 2a 2b 2b

Age (month) 0.1 6 6 0.5 3.5 3.5 13 13 13 13

Radius(mm) 1.64 1.56 1.63 1.56 1.93 1.66 1.67 1.64 1.62 1.58

K0 sN/md
ES 3.10 0.84 0.89 2.25 1.70 1.85 0.41 0.16 0.62 0.53

MR 4.00 1.35 1.44 3.25 2.40 2.50 0.59 0.26 0.97 0.84

STZC 2.00 0.65 0.68 1.60 1.20 1.25 0.29 0.12 0.46 0.40
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It is important to stress that our objective is not to study in
detail the aging process of the membrane material but to
check whether the compression experiment is relevant to de-
termine the mechanical properties of the membrane at differ-
ent stages of the capsule life.

The reproducibility of the results was ensured by perform-
ing the tests several times. In each case the membrane ma-
terial remained within the elastic domain. We showed in a
previous work[1] that the initial concentration of the capsule
inner liquid results from a Donnan equilibrium. This implies
that the capsule can be sligthly overinflated but not underin-
flateds1,lsø1.05d. Here we observed that, in all cases, the
measured force initialy increases withjn for at leastnù3.
Owing to Eq. (13), we shall consequently assume that the
initial inflation is negligible for the present capsules. The
measurement accuracy is ±10−4 N for the compression force
and ±1mm for the plate displacement. This allows reliable
measurements fromj=0.4 for the most rigid capsules and
from j=0.6 for the less rigid ones. Since the results of the
three models differ forjù0.4, it is not possible to measure
accuratelyK0 andz from weak deformations without postu-
lating any mechanical model. In[11], the analysis of the
experiments was based on the determination of the average
values of the elastic moduli which provided, over the whole
range of deformation available, the best agreement between
measurements and numerical predictions. This method privi-
leged the largest deformations and did not permit to distin-
guish, for the capsules considered, between the ES and the
STZC model. In the present study, we will try to distinguish
between the different constitutive laws by a careful inspec-
tion of the different ranges of deformation, as suggested by
the theoretical results presented above.

We start with the analysis of large deformations. For each
experiment, we adjusted the value ofK0 in order to match as
well as possible the asymptotic behavior of the ES model.
We obtain a good agreement with the values ofK0 given in
Table I. The ES model seems thus able to correctly represent
the present membranes. But note that if all the capsule mem-
branes had the same ratioz, all the experimental curves
would match as well. For that reason, we also determined the
values ofK0 that gave the best agreement between the ex-
periments and the two other models. We fixedz=1 for STZC
and C8=1 for MR because these were the values which
minimized the difference with the ES model(see Fig. 2). The
values ofK0 obtained for MR ranged from 1.3 to 1.55 times
those of the ES model. For STZC, they ranged from 0.6 to
0.78 times ES values. Since the uncertainty in the determi-
nation of K0 due to the fitting procedure is of ±2 %, the
discrepancies between the three models are significant. Us-
ing the values ofK0 provided in Table I, it is thus possible to
obtain, for large deformationsjù0.75d, a reasonably good
agreement between the experiments and each of the three
models. For a given a model, the values ofK0 are obtained
with an accuracy of ±5 % when both the fitting and experi-
mental errors are taken into account.

We now consider the smallest deformations available.
Figure 4 compares predictions of the ES model with three
representative capsules. It can be seen that the experimental
curves separate forjø0.70, indicating different modulus ra-
tios z. By varying z from 1/3 to 1, the model ES is indeed

capable of reproducing well all the experimental results. The
two other models are considered in Fig. 5. For a given value
of K0, the MR model cannot reproduce correctly the results
for both small and large deformations since the value ofz is
fixed at 1/3 by constitution. For the STZC model, the prob-
lem is due to the fact that we fixedz=1 in order to correctly
reproduce the large deformations. When the ES model pre-
dicts thatz is close to 1/3(capsule 1), STZC fails as soon as
j is less than 0.6[Fig. 5(a)]. When the ES model predicts
thatz is close to unity the distinction between ES and STZC
model is less visible[Figs. 5(a) and 5(c)]. For z=1, indeed,
the prediction of STZC and ES models superimposed at large
deformation provided the value ofK0 is adjusted correctly
(see Fig. 2). That is probably the reason why no distinction
could be found in[11] between the ES and STZC models,

FIG. 4. Experimental results: comparisons with the ES
model.

FIG. 5. Experimental results: comparisons with the three mod-
els. (a) Capsule 1,(b) capsule 2, and(c) capsule 8.
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since z was close to unity for all the capsules considered.
Here(capsule 2 and 8), the STZC model matches the experi-
ments well for smallsjø0.6d and very large deformations
sjù0.75d. For capsule 2 the very small differences observed
in the intermediate range of deformation are not sufficient for
invalidating the STZC model. But for capsule 8, it can be
concluded that the STZC model fails in the intermediate
range.

Careful inspection of the whole range of deformations
available seems therefore to exclude the MR and STZC mod-
els. On the other hand, the ES model predicts well the be-
haviors of all the present capsules. The accuracy in the de-
termination ofK0 is fairly good s±5 %d as it is measured
from large deformations. The determination ofz is less ac-
curate and depends on the lowest values ofj available. For
capsule 1, the experimental curve is obtained for a range that
intersects the domains of validity of both Eqs.(7) and (11);
the agreement with the numerical prediction forz=1/3 is
thus significant. On the contrary, since only deformations
larger than 0.65 are available for capsule 8[Fig. 5(c)], the
value ofz cannot be accurately determined. It is nevertheless
possible to conclude thatz is in all cases between 1/3 and 1.

The comparisons between the different sets of capsules
show that the membrane properties evolve with time. We
ignore the mechanisms that are responsible for this aging
process but we have observed that the value ofK0 of cap-
sules belonging to the same batch decreased with time(this
point has been confirmed from other tests concerning 35 cap-
sules in Poiseuille flow[22]). The solution in which the cap-
sules are conserved is also important since the elastic moduli
of capsules that have the same age may differ significantly
depending on whether the capsule have been immersed in
silicon oil or not(see results for capsules 7,8 from set 2a and
9,10 from set 2b). But the interesting point is that the ES
model is able to describe the mechanics of young as well as
old capsules(up to 13 months) although the molecular struc-
ture of the membrane is probably significantly altered.

V. CONCLUDING REMARKS

We have simulated the compression of a capsule between
two plates by means of numerical calculations. We have con-
sidered three membrane mechanical constitutive laws. As
shown by Barthès-Biesel, Diaz and Dhenin[2], a rigorous
way to compare the different models is to relate the different
moduli involved in their definitions in the limit of small de-
formations. In this limit, all the constitutive laws indeed de-

generate into the linear expression(3), which involves only
K0 andm0. We considered first the ES model which is appro-
priate for investigating the respective roles of these two
moduli since it assumes that the surface dilation modulus,K,
and shear modulus,m, are independent of the deformations.
The finding of asymptotic behaviors independent ofm sug-
gests that the compression experiments privileges isotropic
dilation compared to shear. We then analyzed the two classic
models, MR and STZC, for whichK and m depend on the
deformations in a complex manner. The results show that the
compression experiments allow the discrimination of the
three models provided a wide range of deformations was
investigated.

We have applied the previous results to the experimental
determination of the mechanical properties of particular cap-
sules. Despite the lack of accurracy in the domain of small
deformations, it has been possible to reach valuable conclu-
sions. The MR and the STZC models failed to reproduce the
experimental results in the whole range of deformations in-
vestigated.(Note that the values ofK0 obtained strongly de-
pended on the model considered.) On the other hand, the ES
model was in agreement with all the experimental results.
Since the isotropic dilation plays a dominant role in com-
pression experiments, it would be inaccurate to conclude that
ES model is able to describe these membranes for any kind
of deformation. It thus seems more reasonable to conclude
that (i) the surface dilation modulus can be considered inde-
pendent of the deformation in the range of area variations
investigatedsaø1.5d; (ii ) the surface shear modulus lies be-
tween 1/3K andK. It is remarkable that the simplest consti-
tutive law, which assumes constant elastic moduli, is able to
model real capsules. Consequently the analytical asymptotic
laws derived here can be used for the determination ofK
without the need of a full numerical simulation. Another in-
teresting finding concerns the aging process of capsules con-
served in their initial NaCl solution. Since it causes the de-
crease ofK without altering the constitutive law of the
membrane, it can constitute a simple way to obtain a wide
range of elastic moduli from a single batch of capsules.
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